Realisations of Finite-Sample Frequency-Selective Filters

نویسنده

  • D.S.G. Pollock
چکیده

A filtered data sequence can be obtained by multiplying the Fourier ordinates of the data by the ordinates of the frequency response of the filter and by applying the inverse Fourier transform to carry the product back to the time domain. Using this technique, it is possible, within the constraints of a finite sample, to design an ideal frequency-selective filter that will preserve all elements within a specified range of frequencies and that will remove all elements outside it. Approximations to ideal filters that are implemented in the time domain are commonly based on truncated versions of the infinite sequences of coefficients derived from the Fourier transforms of rectangular frequency response functions. An alternative to truncating an infinite sequence of coefficients is to wrap it around a circle of a circumference equal in length to the data sequence and to add the overlying coefficients. The coefficients of the wrapped filter can also be obtained by applying a discrete Fourier transform to a set of ordinates sampled from the frequency response function. Applying the coefficients to the data via circular convolution produces results that are identical to those obtained by a multiplication in the frequency domain, which constitutes a more efficient approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design of digital systems for arbitrary sampling rate conversion

The conversion of digital signals from a given sampling rate to a second, arbitrary sampling rate, with both sampling rates derived from independent clock generators, is revisited. A general approach to arbitrary sampling rate conversion is presented from which two efficient realisations are deduced. The computational expenditure of both realisations is derived under the restriction of finite c...

متن کامل

Low latency IIR digital filter design by using metaheuristic optimization algorithms

Filters are particularly important class of LTI systems. Digital filters have great impact on modern signal processing due to their programmability, reusability, and capacity to reduce noise to a satisfactory level. From the past few decades, IIR digital filter design is an important research field. Design of an IIR digital filter with desired specifications leads to a no convex optimization pr...

متن کامل

High-Speed Recursive Digital Filters Based on the Frequency-Response Masking Approach

The frequency-response masking approach for highspeed recursive infinite-impulse response (IIR) digital filters is introduced. In this approach, the overall filter consists of a periodic model filter, its power-complementary periodic filter, and two masking filters. The model filters are composed of two all-pass filters in parallel, whereas the masking filters are linear-phase finite-impulse re...

متن کامل

Closed-form Frequency Estimation Using Second-order Notch Filters

In this paper the problem of the frequency estimation of a sinusoid embedded in white noise is considered. The approach used herein is the minimization of the sample variance of the output of constrained notch filters fed by the noisy sinusoid. In particular, this paper focuses on closed-form expressions of the frequency estimate, which can be obtained using notch filters having an all-zeros FI...

متن کامل

Efficient Realizations of Wide-Band and Reconfigurable FIR Systems

Complexity reduction is one of the major issues in today’s digital system design for many obvious reasons, e.g., reduction in area, reduced power consumption, and high throughput. Similarly, dynamically adaptable digital systems require flexibility considerations in the design which imply reconfigurable systems, where the system is designed in such a way that it needs no hardware modifications ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1970